Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes.
نویسندگان
چکیده
Cyanidin, a natural flavonoid abundant in fruits and vegetables, is known to regulate cellular lipid metabolism; however, its underlying mechanism of action and protein targets remain unknown. Here, the ligand binding activity of cyanidin on liver X receptors (LXRs) was investigated utilizing surface plasmon resonance and time-resolved fluorescence energy transfer (TR-FRET) analyses. LXRs are nuclear receptors which function as critical transcription factors in the regulation of cellular lipid and glucose metabolism. This includes the stimulation of high-density-lipoprotein synthesis and activation of reverse cholesterol transport. The present findings show that cyanidin induces the transactivation of LXRs and binds directly to the ligand-binding domain of both LXRα and LXRβ with dissociation constants of 2.2 and 73.2μM, respectively. Cell-free FRET analysis demonstrated that cyanidin induces the recruitment of co-activator peptide for LXRα and LXRβ with EC50 of 3.5μM and 125.2μM, respectively. In addition, intracellular cholesterol and triglyceride (TG) concentrations were reduced in macrophages following cyanidin stimulation. In cultured hepatocytes, cyanidin mildly induced SREBP1c gene expression but marginally affected cellular TG concentrations as well as reduced cellular cholesterol accumulations which activated the expression of genes for reverse cholesterol transport. Two cyanidin metabolites, procatechic acid and phloroglucinaldehyde, did not directly bind or activate LXRs. These results demonstrate that cyanidin is a direct ligand for both LXRα and LXRβ, suggesting that cyanidin may operate, at least in part, through modulation of cellular LXR activity.
منابع مشابه
Crocin Prevents Sub-Cellular Organelle Damage, Proteolysis and Apoptosis in Rat Hepatocytes: A Justification for Its Hepatoprotection
Crocin, the main constituent of saffron (Crocus sativus L.), is a natural carotenoid which is known for its antioxidant activity. Liver as the organ that metabolizes many chemicals is one of the first position that is at risk of environmental pollutants. It is clear that compounds that exhibit antioxidant properties, scavenging of free radicals and inhibition of lipid peroxidation are expected ...
متن کاملCrocin Prevents Sub-Cellular Organelle Damage, Proteolysis and Apoptosis in Rat Hepatocytes: A Justification for Its Hepatoprotection
Crocin, the main constituent of saffron (Crocus sativus L.), is a natural carotenoid which is known for its antioxidant activity. Liver as the organ that metabolizes many chemicals is one of the first position that is at risk of environmental pollutants. It is clear that compounds that exhibit antioxidant properties, scavenging of free radicals and inhibition of lipid peroxidation are expected ...
متن کاملAllantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملEffect of interval and continuous training exercises after high-fat diet on liver X receptor alpha gene expression
Background: A group of adenosine triphosphate binding cassette transporter (ABCs) including ABCA1, ABCG1, ABCG4, ABCG5 and, ABCG8 induce cholesterol efflux from the cell and thereby are target genes in prevention and treatment of atherosclerosis. ABCA1, ABCG5 and, ABCG8 genes are activated by liver X receptor (LXR) and liver receptor homolog-1 (LRH-1) that play essential roles in metabolic proc...
متن کاملCytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes
Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioorganic & medicinal chemistry letters
دوره 23 14 شماره
صفحات -
تاریخ انتشار 2013